Finding Points in General Position
نویسندگان
چکیده
We study the General Position Subset Selection problem: Given a set of points in the plane, find a maximum-cardinality subset of points in general position. We prove that General Position Subset Selection is NP-hard, APX-hard, and present several fixed-parameter tractability results for the problem.
منابع مشابه
An Explicit Viscosity Iterative Algorithm for Finding Fixed Points of Two Noncommutative Nonexpansive Mappings
We suggest an explicit viscosity iterative algorithm for finding a common element in the set of solutions of the general equilibrium problem system (GEPS) and the set of all common fixed points of two noncommuting nonexpansive self mappings in the real Hilbert space.
متن کاملFinding Sets of Points without Empty Convex 6-Gons
Erdös asked whether every large enough set of points in general position in the plane contains six points that form a convex 6-gon without any points from the set in its interior. In this note we show how a set of 29 points was found that contains no empty convex 6-gon. To this end a fast incremental algorithm for finding such 6-gons was designed and implemented and a heuristic search approach ...
متن کاملBisections of Two Sets of Points in the Plane Lattice
Assume that 2m red points and 2n blue points are given on the lattice Z2 in the plane R2. We show that if they are in general position, that is, if at most one point lies on each vertical line and horizontal line, then there exists a rectangular cut that bisects both red points and blue points. Moreover, if they are not in general position, namely if some vertical and horizontal lines may conta...
متن کاملCounting triangulations of balanced subdivisions of convex polygons
We compute the number of triangulations of a convex k-gon each of whose sides is subdivided by r − 1 points. We find explicit formulas and generating functions, and we determine the asymptotic behaviour of these numbers as k and/or r tend to infinity. We connect these results with the question of finding the planar set of n points in general position that has the minimum possible number of tria...
متن کاملCounting Triangulations of Some Classes
We compute the number of triangulations of a convex k-gon each of whose sides is subdivided by r−1 points. We find explicit formulas and generating functions, and we determine the asymptotic behaviour of these numbers as k and/or r tend to infinity. We connect these results with the question of finding the planar set of points in general position that has the minimum possible number of triangul...
متن کامل